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Outline

• Background

• Recent advances in III-V infrared detectors 
– Absorber material – type-II superlattice
– Unipolar barrier device architecture 

• Type-II superlattice unipolar barrier infrared detectors

• Summary
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Background

Traditional Bulk II-VI semiconductor (HgCdTe) 
and

III-V semiconductor IR detectors
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Traditional Bulk Infrared Material 
Cutoff Wavelength Coverage

• HgCdTe alloy (MCT) is the most successful infrared material to date
– High-performance detector.   Varying alloy composition provides continuously adjustable 

cutoff wavelength coverage, ranging from NIR to VLWIR

– Soft and brittle. Requires expert handling in growth, fabrication, storage.  Costly.
– Weak Hg-Te bond. Longer λcutoff , higher Hg fraction, progressively more challenging

• FPAs based on (near) lattice-matched bulk III-V semiconductor photodiodes are 
highly successful, but only in a few cases where suitable substrates are available.
– SWIR InGaAs performs at near theoretical limit

• Single color, limited cutoff wavelength adjustability

– InSb dominates MWIR market, despite lower operating temperature than MCT
• Fixed cutoff wavelength, single color

– Lacking the continuous cutoff wavelength adjustability of MCT
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III-V Infrared Detector with adjustable λCutoff ?
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Recent advances in 
III-V infrared detectors 

Absorber material – Type-II superlattice
Unipolar barrier device architecture  
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Semiconductor Superlattices

• Type-II superlattice (T2SL) of particular interest for infrared detectors
– Energy band gap can be made smaller than the constituent semiconductors
– Also: type-II strained-layer superlattice (T2SLS)

• Examples of infrared T2SL that can be grown on GaSb substrate
– InAs/GaSb, InAs/GaInSb, InAs/InAsSb, InAs/InSb, InAsSb/InSb

• Artificial crystalline material 
grown atomic layer by layer 

• Periodic structure, usually 
made from two alternating 
semiconductors
– E.g.,  InAs/GaSb

• “Band structure engineered 
material”:  Electric, transport, 
and optical properties can be 
adjusted by design

Cross-sectional scanning tunneling microscope (XSTM) image, InAs/GaSb SL.
M. Weimer Group, Texas A & M. [J. Vac. Sci. Technol. B 23�3�, 1-5 
(2005).]

InA
s

GaSb
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Antimonide Type-II Superlattices:
Features and Advantages

• Type-II broken-gap band alignment between InAs & GaSb
– Electron wave functions localized in InAs; hole wave functions in GaSb layers (type-II)
– GaSb Ev is higher than InAs Ec (Broken gap)

• Band gap can be made smaller than constituent bulk semiconductors
– Suitable for IR detection

• Sufficiently large absorption coefficient to achieve ample QE
• Continuously adjustable band gap / λcutoff by varying layer widths

– Covering SWIR, MWIR, LWIR, and VLWIR
• Dark current reduction in superlattice 

– Can be engineered for Auger suppression 
– Less susceptible to tunneling

Adjustable λcutoff

Review Book Chapter:  
“Type-II Superlattice Infrared Detectors”,   
D. Z. Ting, A. Soibel, L. Höglund, J. Nguyen, C. J. Hill, 
A. Khoshakhlagh, and S. D. Gunapala, 
Semiconductors and Semimetals 84,  pp.1-57 (2011).
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The nBn detector

• The nBn
– Maimon & Wicks, Appl Phys Lett (2006)

• 351 citations as of May 2019 (Web of Science)
– Barrier blocks electrons but not holes
– SRH processes are drastically reduced in 

wide-band-gap barrier region
– Suppresses G-R dark current 
– Photocurrent flows un-impeded 
– Resulting in higher operating 

temperature / sensitivity
– Also suppressed surface leakage current
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Unipolar Barrier Device Architecture

• A variety of unipolar barrier architectures for single- and dual-band devices
• The challenge is in finding heterostructures with

– Matching absorber and barrier conduction or valence band edges
– Both absorber and barrier should be closely lattice-matched to the substrate

• Barrier layers tend to be thin; lattice-matching requirement less stringent

• The antimonides (InAs, GaSb, AlSb and their alloys) provide an ideal 
material system for implementing unipolar barrier infrared detectors
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Type-II superlattice (T2SL) 
unipolar barrier infrared detectors

LWIR InAs/GaSb T2SL CBIRD
MWIR InAs/InAsSb T2SLS nBn

MWIR FPA for CubeSat Spectral Imaging
VLWIR FPA for SLI-T
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LWIR InAs/GaSb Type-II Superlattice
Complementary Barrier Infrared Detector (CBIRD)

• Complementary Barrier Infrared Detector
– p-type LWIR type-II superlattice absorber 
– unipolar hole barrier (hB)
– unipolar electron barrier (eB)

• LWIR detector
– 9.8 µm cutoff   (50% peak QE)
– QE=40% (λ=8.5 µm, no AR coating)
– Zero-bias turn-on
– Jd( 0.1V, 77K) = 0.8x10-5 A/cm2 (~4.2x Rule’07)

• FPA with high uniformity and operability

Ting et al.,   Appl. Phys. Lett.  95, 023508 (2009) (236 citations as of May 2019);   
Appl. Phys. Lett. 102, 121109 (2013); U. S. Patent No. 8,368,051 (2013)

!
ISC 0903 DI, 320x256, 30 µm pitch
NEDT – 18.6 mK (f/2, 300K)
[ Rafol et al., JQE 48, 878 (2012) ]
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MWIR InAs/InAsSb Type-II Strained-Layer Superlattice 
High Operating Temperature Barrier IR Detector (HOT-BIRD)

• MWIR InAs/InAsSb T2SLS  nBn detector and FPA
– Cutoff wavelength: 5.37 µm (160 K);  QE(4.3 µm, 150K)=52% (No A/R coating) 
– Jdark(-0.2V, 157K)=9.6´10-5 A/cm2 (~4.5X Rule’07)
– D*=3 ´10-11 cm-Hz½/W at 150K operating temperature (f/2 optics, 300 K background) 
– FPA: 160K NEDT=18.7 mK, operability =99.7%; 170K NEDT=26.6 mK, operability =99.6%

• Designed for same λcutoff , operates at much higher temperature than InSb
– Planar InSb (ion implant) ~ 80K.  MBE epi InSb ~ 95-100K (can image up to 110-120K)
– Reduced cryo-cooler Size, Weight, and Power - SWaP advantages
– Retains benefits of III-V semiconductor robustness (“ility” advantages)
– InSb is a major incumbent technology

• InSb FPAs account for >50% of all photodetector FPAs sold in 2018 (G. Fulop, Maxtech International, Inc.)

Ting et al.  Appl. Phys. Lett.  113, 021101 (2018); IEEE Photonics J. 10(6), 6804106 (2018);  U. S. Patent No. 8,217,480 (2012)

170 K
λc=5.47 µm

f/2 optics, 300K background
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• NASA CubeSat Infrared Atmospheric Sounder (CIRAS): Spectral imaging 
(intermediate background) requires good low-T dark current characteristics

• Detectors specifically designed to meet the requirement for this application
– λcutoff ~ 5.4 µm at 120K.   Jdark(-0.2V,111K)=1.8x10-8 A/cm2 (~3x Rule’07). 
– Nearly diffusion-limited dark current to below 110K

• FPA
– Mean Jdark(115K)=1.6x10-7 A/cm2 ; mean QE ~55% in 3 – 5 µm band at 120K
– Mean NEDT (115K) = 20.1 mK (σ= 3mK), 300K background, F/7.8
– NEDT operability: 99.99%  

MWIR T2SL Detectors & FPAs for 
Earth Science Imaging Spectrometer Applications

λc= 5.4 µm
115 K

Ting et al., SPIE Proc. 10624, 1062410 (2018).

CIRAS: Pagano et al., SPIE Proc. 10402, 1040209 (2017); SPIE Proc. 10769, 1076906 (2018) 

Mounted focal plane array (FPA) and integrated 
dewar cooler assembly (IDCA). 
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VLWIR T2SL Detectors & FPAs for SLI-T

• Developing T2SL-based LWIR detectors for NASA Sustainable Land 
Imaging Technology (SLI-T) Program

• Unipolar barrier infrared detector architecture, T2SL absorber
– High quality λcutoff ~ 11.2 µm T2SL absorber material
– 240 ns minority carrier lifetime
– Jdark(60K)~10-5 A/cm2 ;  QE ~ 37% without A/R coating.
– Very good FPA operability

• λcutoff ~ 12.6 µm detectors/FPAs also demonstrated. Optimization ongoing. 
• Collaborating with industry to demonstrate compact camera core

T=60 K

λc= 11.2 µm

No A/R coating

99.7% operability   (17SLL03) 

λc = 12.6 µm 

T= 65 K

99.98% operability   (18SLL03) 

Ting et al., SPIE Proc. 10624, 1062410 (2018). 
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Summary
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Antimonide Unipolar Barrier Infrared Detectors
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Summary

• Significant advances in III-V semiconductor infrared 
detector development in the past decade
– Infrared absorber material – e.g. type-II superlattices
– Detector architecture – unipolar barriers
– The antimonides provides an excellent platform for implementing 

III-V unipolar barrier infrared detectors and focal plane arrays

• MWIR InAs/InAsSb T2SL FPAs operate at significantly 
higher temperature than market leading InSb FPAs

• Low dark current MWIR T2SL FPAs suitable for spectral 
imaging applications

• VLWIR T2SL FPAs being developed for land imaging 
applications under SLI-T


